Work Class Notes Physics
 Western International HS

$$
2020-2021
$$

Nada Saab, Ph.D

Work : W

$$
W=F \times S
$$

$\mathrm{W}(\mathrm{N} . \mathrm{m}=$ Joules $)=\mathrm{F}(\mathrm{N}) \times \mathrm{S}(\mathrm{m})$

$W=\frac{F}{S}$

Work (W) is done on an object whenever a force makes that object move.
$\mathrm{W}=0$ if the object does not move.

If the object does not move, no work : W = 0

$$
\begin{gathered}
\mathrm{W}=\mathrm{F} \times \mathrm{S} \\
\mathrm{~W}=\mathrm{F} \times 0=0
\end{gathered}
$$

Homework

1) A force of 20 N was used to push a box 8.0 m along the floor. How much work was done? Answer: 1.6 x 102 J
$\mathrm{F}=20 \mathrm{~N}$
$\mathrm{~S}=8.0 \mathrm{~m}$

$$
W=F \times S=20 \times 8=160 \mathrm{~J}
$$

2) A 2.0 kg puck accelerated at $5.0 \mathrm{~m} / \mathrm{s}^{2}$ for 0.50 m across a frictionless air hockey table. How much work was one on the puck? Answer: 5.0 J

$$
\begin{aligned}
& \mathrm{m}=2.0 \mathrm{~kg} \\
& \mathrm{a}=5.0 \mathrm{~m} / \mathrm{s}^{2} \\
& \mathrm{~S}=0.5 \mathrm{~m}
\end{aligned}
$$

$$
\mathrm{W}=\mathrm{F} \times \mathrm{S}
$$

$\mathrm{F}=\mathrm{mx} \mathrm{a}=2.0 \times 5.0=10 \mathrm{~N}$

$$
\mathrm{W}=\mathrm{F} \times \mathrm{S}=10 \times 0.5=5.0 \text { Joules }
$$

3) A bulldozer pushed a large rock with a force of 5000 N at $2.0 \mathrm{~m} / \mathrm{s}$ for 20 s . How much work was done by the bulldozer? Answer: $2.0 \times 10^{5} \mathrm{~J} \quad \mathrm{~W}=\mathrm{F} x \mathrm{~S}$

Force $=5000 \mathrm{~N}$
Velocity of the rock $(\mathrm{V})=2.0 \mathrm{~m} / \mathrm{s}$
Time $=20 \mathrm{~s}$
Find S:

$$
\begin{aligned}
& V=\frac{S}{t} \\
& 2.0=\frac{S}{20}
\end{aligned}
$$

$2.0 \times 20=\frac{S \times 20}{20}$

$$
S=2.0 \times 20=40 \mathrm{~m}
$$

$$
\mathrm{W}=\mathrm{F} \times \mathrm{S}=5000 \times 40=200000 \text { Joules. }
$$

Another way to solve

$$
\frac{2.0}{1}=\underline{S}
$$

Cross multiply:

$$
\begin{aligned}
2.0 \times 20 & =\mathrm{S} \times 1 \\
40 & =\mathrm{S}
\end{aligned}
$$

Example 4: Running Up the Stairs.

How much power is developed by a 60 kg boy running up a 4.5 m high flight of stairs in 4.0 s ?

$$
\mathrm{P}=\mathrm{W} / \mathrm{t} \quad \mathrm{~W}=\mathrm{F} \times \mathrm{S} \quad \mathrm{~F}=\mathrm{m} \times \mathrm{g}
$$

$F_{\text {gravity }}=W=m \times g=60 \times 9.8=588 \mathrm{~N}$

1) The gravitational force (Fg) on the boy: $\mathrm{Fg}=\mathrm{mxg}=60 \times 9.8=588 \mathrm{~N}$.
2) The work done by the boy: $\mathrm{W}=\mathrm{F} \times \mathrm{S}=500 \times 4.5=2646$ Joules
3) The power developed by the boy:

$$
\mathrm{P}=\mathrm{W} / \Delta t=2646 / 4.0=660 \text { watts }
$$

The boy develops 660 watts of power

Power Homework

$$
P=\frac{W}{t}
$$

1) How much power does a crane develop doing $6.0 \times 10^{4} \mathrm{~J}$ of work in $5.00 \mathrm{~min}(5 \times 60=300 \mathrm{~s})$? Answer: $2.0 \times 10^{2} \mathrm{~W}$
$\mathrm{W}=6.0 \times 10^{4} \mathrm{~J}$
$\mathrm{t}=300 \mathrm{~s}$
$\mathrm{P}=\frac{\mathrm{W}}{\mathrm{t}}=\frac{6.0 \times 10^{4}}{300 \mathrm{~s}} \mathrm{~J}=200$ Watts

2) How long does it take a 2500 W electric motor to do $7.5 \times 10^{4} \mathrm{~J}$ of work? Answer: 30 s

$$
\mathbf{P}=\frac{\mathbf{W}}{\mathbf{t}}
$$

$\mathrm{P}=2500 \mathrm{~W}$
$\mathrm{W}=7.5 \times 10^{4} \mathrm{~J}$
$\mathrm{t}=$?

$$
\begin{gathered}
P=\frac{\mathbf{W}}{\mathbf{t}} \\
2500=\frac{7.5 \times 10^{4}}{t}
\end{gathered}
$$

$$
\begin{gathered}
\frac{2500}{1}=\frac{7.5 \times 10^{4}}{t} \\
=
\end{gathered}
$$

$2500 \times \mathrm{t}=75000$

$\underline{2500} \times \mathrm{t}=\underline{75000}$
$2500 \quad 2500$

$$
\mathrm{t}=30 \mathrm{~s}
$$

3) How much power is developed by a 50 kg girl running up a 3.00 m high flight of stairs in 2.5 s ?

$$
\mathrm{P}=\mathrm{W} / \mathrm{t} \quad \mathrm{~W}=\mathrm{FxS} \quad \mathrm{~F}=\mathrm{m} \times \mathrm{g}
$$

$$
F_{\text {gravity }}=W=m \times g=50 \times 9.8=490 \mathrm{~N} .
$$

1) The gravitational force (Fg) on the boy: $\mathrm{Fg}=\mathrm{mxg}=490 \mathrm{~N}$
2) The work done by the boy: $\mathrm{W}=\mathrm{F} \times \mathrm{S}=490 \times 3=1470$ Joules
3) The power developed by the boy:

$$
P=w / \Delta t=1470 / 2.5=588 \text { Watts }
$$

The boy develops 588 watts of power

A camper uses a rope and pail to get water from a well. If the pail with water has a mass of 20 kg and if it is raided a vertical distance of 3.5 m , how much work is done by the camper?
$\mathrm{W}=\mathrm{F} \times \mathrm{S}=200 \times 3.5=700$ Joules

