Work Down a Slope

by
Nada Saab-Ismail, PhD, MAT, MEd, IB

nhsaab.weebly.com
nhsaab2014@gmail.com

P3.2B Compare work done in different situations.

Items:

1. General Formula of Work.
2. Work Done on an Object by a Constant Force (F), through a

Displacement (s), with an Angle (θ).
3. Work Down a Slope.

The general formula of work (W) done on an object by a constant force (F), through a displacement (s), with an angle (θ) between F and s, is:

General Formula for Work
$\mathrm{W}=(\mathrm{F} \cos \theta) \mathrm{s}$

Example 1: Pulling a Suitcase-on-Wheel

a) A woman is pulling a suitcase-on-wheel with a force F for a distance s and an angle (θ) between F and s.
b) The free body diagram starting with the wheel.

The work done is : $\mathrm{W}=(\mathrm{F} \cos \theta) \mathrm{S}$

Consider that $\mathrm{F}=45 \mathrm{~N}, \mathrm{~s}=75 \mathrm{~m}, \theta=50^{\circ}$ then $\cos 50^{\circ}=0.65$,

$$
W=(F \cos \theta) s=45 \times 0.65 \times 75=2170 \mathrm{~J} .
$$

Cases when Angle θ is equal to 0° or $\mathbf{1 8 0}^{\circ}$

Work can be either positive or negative, depending on whether the force and displacement are in the same or opposite direction.

Example 2: In the bench press, work is done during both the lifting and lowering phase of the barbell's motion (a).

(a)
(b) Positive Work $\left(\theta=0^{\circ}\right)$:

(b)

The weight lifter raises the barbell a distance above his chest. Therefore, S and F are parallel and in the same direction. So, the angle θ between and S and F is 0°. We know that $\cos 0^{\circ}=1$

$$
W=(F \cos \theta) s=W=\left(F \cos 0^{\circ}\right) s=F s .
$$

During the lifting phase, the force F does a positive work on the barbell.
(c) Negative Work $\left(\theta=180^{\circ}\right)$:

(c)

The weight lifter lowers the barbell the same distance. Therefore, S and F are parallel and in opposite direction. So, the angle θ between and S and F is 180°.
We know that $\cos 180^{\circ}=-1$

$$
W=(F \cos \theta) s=W=\left(F \cos 180^{\circ}\right) s=-F \times s .
$$

During the lowering phase, the force F does a negative work on the barbell.

Cases when angle $\boldsymbol{\theta}$ is equal to $\mathbf{9 0}^{\boldsymbol{\circ}}$

Example 3: Accelerating a Crate:

a) The truck is accelerating for a displacement of s. The crate does not slip.
b) The free-body diagram of the forces on the crate: normal force $\left(\mathrm{F}_{\mathrm{N}}\right)$, weight (W), friction force $\left(f_{\mathrm{s}}\right)$.

(a)

Analysis of the work done by the normal force (F_{N}) and weight $(\mathrm{W}),\left(\theta=90^{\circ}\right)$:

Both F_{N} and W are perpendicular to the direction of the displacement.
The angle between the displacement (s) and F_{N} is 90°. The angle between the displacement (s) and W is also 90 degrees. We know that $\cos 90^{\circ}=0$,

$$
W=(F \cos \theta) s=W=\left(F \cos 90^{\circ}\right) s=0 .
$$

So, for both F_{N} and W , the amount of work is zero. Both forces cancel each other.

The work is zero if the force is perpendicular to the displacement $\left(\theta=90^{\circ}\right)$

Analysis of the work done by the friction force $\left(f_{s}\right)\left(\theta=0^{0}\right)$

The friction force (f_{s}) and the displacement (S) are parallel and in the same direction. So, the angle θ between and S and F is 0°. We know that $\cos 0^{\circ}=1$.

$$
\mathrm{W}=\left(f_{\mathrm{s}} \cos \theta\right) \mathrm{s}=\mathrm{W}=\left(f_{\mathrm{s}} \cos 0^{\circ}\right) \mathrm{s}=f_{\mathrm{s}} \mathrm{~s}=(\mathrm{m} \times \mathrm{a}) \mathrm{s}
$$

m is mass of the crate a is acceleration of the truck.

General formula for work when the net force and displacement are in the same direction.

Consider a constant net external force acting on an object. The object is displaced a distance \mathbf{s}, in the same direction as the net force.

The work can be given by the formula

$$
W=\left(\sum F\right) s=(m a) s
$$

Σ^{F}
is the net force or sum of all the forces acting on the object.

Work Down a Slope

Example 4: A skier down a slope; A 58 kg skier is coasting down a slope with an angle 25°. She accelerates down the slope because of the gravitational force.
The kinetic frictional force $\left(f_{k}\right)$ of 71 N opposes her motion. Ignoring air resistance, determine the work done at a displacement point (s) of 57 m downhill.
a) The skier moving along the displacement (s). V_{0} is the initial speed. V_{f} is the final speed.
b) The free body diagram for the skier.

(a)

(b) Free-body diagram for the skier

Analysis of the free-body diagram

(b) Free-body diagram for the skier

Forces along the y axis

The weight of the skier mg components along the y axis is $\mathrm{mg} \cos 25^{\circ}$.
There is also the normal force (F_{N}) of equal magnitude but opposite direction:

$$
\mathrm{FN}=-\mathrm{mg} \cos 25^{\circ} .
$$

Sum of the forces along the y axis is 0 .

(b) Free-body diagram for the skier

Forces along the x axis

The weight of the skier mg components along the x axis is $\mathrm{mg} \sin 25^{\circ}$.
There is also the kinetic frictional force $\left(f_{k}\right)$ of 71 N opposing the motion.

Sum of the forces along the x axis $=\left(m g \sin 25^{\circ}\right)-71=$
$(58 \times 9.8 \times 0.42)-71=$
170 N

(a)

The displacement and net force are in the same direction (angle 0°)

$$
\mathrm{W}=\text { net force } \times \text { displacement }=170 \times 57=9700 \mathrm{~J}
$$

Example 5:

References:

1) Humanic. (2013). www.physics.ohio-state.edu/~humanic/. In Thomas Humanic Brochure Page.

Physics 1200 Lecture Slides: Dr. Thomas Humanic, Professor of Physics, Ohio State University, 2013-2014 and Current. www.physics.ohio-state.edu/~humanic/
2) Cutnell, J. D. \& Johnson, K. W. (1998). Cutnell \& Johnson Physics, Fourth Edition. New York: John Wiley \& Sons, Inc.
The edition was dedicated to the memory of Stella Kupferberg, Director of the Photo Department: "We miss you, Stella, and shall always remember that a well-chosen photograph should speak for itself, without the need for a lengthy explanation"
3) Martindale, D. G. \& Heath, R. W. \& Konrad, W. W. \& Macnaughton, R. R. \& Carle, M. A. (1992). Heath Physics. Lexington: D.C. Heath and Company
4) Zitzewitz, P. W. (1999). Glencoe Physics Principles and Problems. New York: McGraw-Hill Companies, Inc.
5) Schnick, W.J. (n.d.). Calculus-based physics, A Free Physics Textbook. Retrieved from http://www.anselm.edu/internet/physics/cbphysics/index.html
6) Nada H. Saab (Saab-Ismail), (2010-2013) Westwood Cyber High School, Physics.
7) Nada H. Saab (Saab-Ismail), (2009-2014) Wayne RESA, Bilingual Department.

