Free Fall Acceleration

by

Nada Saab, Ph.D.
http://nhsaab.weebly.com
December 1-4

$$
2020
$$

3.2. Free fall acceleration: (P2.2G)

The strobe photograph above shows two balls of different mass dropped at same instant.

- When air resistance is minimal, all freely falling objects have the same downwards acceleration.
-Acceleration due to gravity is approximately constant near the Earth's surface and has a value of $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$

Acceleration of Free Falling Objects	
The equations derived for uniform acceleration in chapter 2 apply to freely falling objects. The three equations for free fall motion are:	
$\overrightarrow{v_{2}}=\overrightarrow{v_{1}}+\vec{g} \Delta \mathrm{t}$	Equation (1)
$\left.\overrightarrow{\boldsymbol{\Delta}} \mathrm{d}=\overrightarrow{v_{1} \boldsymbol{\Delta} \mathrm{t}}+\frac{1}{2} \overrightarrow{g(\Delta t}\right)^{2}$	Equation (2)
$\overrightarrow{\boldsymbol{\Delta d}}=\frac{\left(\overrightarrow{v_{2}}+\vec{v}_{1}\right) \Delta \mathrm{t}}{2}$	Equation (3)
$v:$ Velocity down is negative	

What to do?

1- Open pages 88 . Study sample problem. Do exercises $1,2,3$, and 4 . Show your work and submit.

2- When submitting, write the section number Example:
Section 3.2 (Free fall)

Sample Problems

1. A girl throws a rock straight down form a bridge at $15 \mathrm{~m} / \mathrm{s}$. How fast is ti going 3.0 s later?

We know from the question that

$$
\begin{aligned}
\therefore v_{1} & =15 \mathrm{~m} / \mathrm{s}[\text { down }]=-15 \mathrm{~m} / \mathrm{s} \\
\Delta t & =3.0 \mathrm{~s}
\end{aligned}
$$

However, since the rock is in free fall, the instant it leaves the girl's hand we can also assume that:

$$
a=g=9.8 \mathrm{~m} / \mathrm{s}^{2}[\text { down }]=-9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

To find the velocity of the rock, we use the equation

$$
\begin{aligned}
v_{2} & =v_{1}+a \Delta t \\
& =-15 \mathrm{~m} / \mathrm{s}+\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(3.0 \mathrm{~s}) \\
& =-15 \mathrm{~m} / \mathrm{s}+-29.4 \mathrm{~m} / \mathrm{s} \\
& =-44.4 \mathrm{~m} / \mathrm{s}, \text { or } 44 \mathrm{~m} / \mathrm{s}[\text { down }]
\end{aligned}
$$

Therefore, the rock acquires a velocity of $44 \mathrm{~m} / \mathrm{s}$ [down] in 3.0 s .
2. An egg drops through a hole in bottom of nest. How far does it fall in 1.0 s ?

Assuming that the egg is in free fall after leaving the nest, we can state the following;

$$
\begin{aligned}
v_{1} & =0 \\
\Delta t & =1.0 \mathrm{~s} \\
a & =9.8 \mathrm{~m} / \mathrm{s}^{2}[\text { down }]=-9.8 \mathrm{~m} / \mathrm{s}^{2} \\
\Delta d & =v_{1} \Delta t+\frac{1}{2} a(\Delta t)^{2} \\
& =(0)(1.0 \mathrm{~s})+\left(\frac{1}{2}\right)\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(1.0 \mathrm{~s})^{2} \\
& =-4.9 \mathrm{~m}, \text { or } 4.9 \mathrm{~m}[\text { down }]
\end{aligned}
$$

Therefore, the egg falls 4.9 m in 1.0 s .
3. A girl throws a baseball straight up at $15 \mathrm{~m} / \mathrm{s}$. What is the ball's velocity 2.0 s later?

$$
\begin{aligned}
v_{1} & =15 \mathrm{~m} / \mathrm{s}[\mathrm{up}]=15 \mathrm{~m} / \mathrm{s} \\
a & =9.8 \mathrm{~m} / \mathrm{s}^{2}[\text { down }]=-9.8 \mathrm{~m} / \mathrm{s}^{2} \\
\Delta t & =2.0 \mathrm{~s} \\
v_{2} & =v_{1}+a \Delta t \\
& =15 \mathrm{~m} / \mathrm{s}+\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(2.0 \mathrm{~s}) \\
& =15 \mathrm{~m} / \mathrm{s}-19.6 \mathrm{~m} / \mathrm{s} \\
& =-4.6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Practice

1. What velocity does a freely falling object after 4.0 s if it starts from rest?
2. A boy throws a rock into a deep well with a velocity of $10 \mathrm{~m} / \mathrm{s}$ [down]. What is the velocity of the rock 2.5 s later?
3. A prankster drops a water-filled balloon from the balcony of a high-rise. How long does it take for the balloon to fall 44.1 m ?
4. A girl uses a slingshot to fire a stone straight up at $24 \mathrm{~m} / \mathrm{s}$. What is the stone's velocity 3.0 s later? what is its displacement 3.0 s after it was fired.

Answers:

1. $39 \mathrm{~m} / \mathrm{s}$ [down] hint: use equation (1)
2. $35 \mathrm{~m} / \mathrm{s}$ [down] hint: use equation (1)
3. 3.0 s hint: use equation (2)
4. $5.4 \mathrm{~m} / \mathrm{s}$ [down] hint: use equations (1) and (3) 28m [up]
