Physics Notes

by

Nada Saab, Ph.D.

http://nhsaab.weebly.com

November 9-13

2020

Chapter 2. Velocity and Acceleration

2.5 Equations for Motion with Uniform Acceleration;(P2.2F)

Three equations for motion with uniform acceleration are:

Equations for Motion with Uniform Acceleration
$\overrightarrow{v_{2}}=\overrightarrow{v_{1}}+\vec{a} \Delta \mathrm{t}$
$\vec{\Delta} \mathrm{d}=\overrightarrow{v_{1}} \boldsymbol{\Delta} \mathrm{t}+\frac{1}{2} \vec{a}(\Delta \mathrm{t})^{2}$
$\overrightarrow{\Delta \mathrm{d}}=\frac{\left(\overrightarrow{v_{2}-\overrightarrow{v_{1}}}\right)}{2} \Delta \mathrm{t}$

If the motion is a straight line, the vector notation may be omitted and positive and negative signs used instead.

- \vec{a} represents the object's uniform acceleration
- Δt represents the time interval over which the object's velocity changed
- $\overrightarrow{v 2}$ represents the object's final velocity at the end of the time interval
- $\overrightarrow{v 1}$ represents the object's initial velocity at the beginning of the time interval

What to do?

1. Study sample problem below.
2. Do practice exercises numbers $1,2,3$.
3. Show your work and submit.
4. Answers are shown below (in blue) to verify your work.
5. When submitting, write the section number, Example:

Section 2.5 (Equations of Uniform Acceleration) Exercises numbers 1, 2, 3 .

Sample Problems:

1. A ball rolling down the hill at $4.0 \mathrm{~m} / \mathrm{s}$ accelerates at $2.0 \mathrm{~m} / \mathrm{s}^{2}$. What is its velocity 5.0 s later?

To solve motion problems with this type, it helps to summarize the given information in algebraic form. this summary is show below

$$
\begin{aligned}
v_{1} & =4.0 \mathrm{~m} / \mathrm{s} \\
a & =2.0 \mathrm{~m} / \mathrm{s}^{2} \\
\Delta t & =5.0 \mathrm{~s} \\
v_{2} & =?
\end{aligned}
$$

To solve the problem, we can use one of the equation for uniform acceleration. It must contain ν_{2} as the only variable for which the value is not know.

$$
v_{2}=v_{1}+a \Delta \mathrm{t}
$$

Substituting the values into this equation yields

$$
\begin{aligned}
v_{2} & =4.0 \mathrm{~m} / \mathrm{s}+\left(2.0 \mathrm{~m} / \mathrm{s}^{2}\right)(5.0 \mathrm{~s}) \\
& =4.0 \mathrm{~m} / \mathrm{s}+10 \mathrm{~m} / \mathrm{s} \\
& =14 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The ball reaches a velocity of $14 \mathrm{~m} / \mathrm{s}$ in 5.0 s .
2. A car traveling at $10 \mathrm{~m} / \mathrm{s}$ accelerates at $4.0 \mathrm{~m} / \mathrm{s}^{2}$ for 8.0 s . What is its displacement during this intervals?

$$
\begin{aligned}
v_{1} & =10 \mathrm{~m} / \mathrm{s} \\
a & =4.0 \mathrm{~m} / \mathrm{s}^{2} \\
\Delta t & =8.0 \mathrm{~s} \\
\Delta d & =? \\
\Delta d & =v_{1} \Delta t+\frac{1}{2} a(\Delta t)^{2} \\
& =(10 \mathrm{~m} / \mathrm{s})(8.0 \mathrm{~s})+\frac{1}{2}\left(4.0 \mathrm{~m} / \mathrm{s}^{2}\right)(8.0 \mathrm{~s})^{2} \\
& =80 \mathrm{~m}+\left(2.0 \mathrm{~m} / \mathrm{s}^{2}\right)\left(64 \mathrm{~s}^{2}\right) \\
& =80 \mathrm{~m}+128 \mathrm{~m} \\
& =208 \mathrm{~m}, \text { or } 2.1 \times 10^{2} \mathrm{~m}
\end{aligned}
$$

The car's displacement for 8.0 s is $2.1 \mathrm{x} 10^{2} \mathrm{~m}$.

Practice Exercises.

1. A horse running at $4.0 \mathrm{~m} / \mathrm{s}$ accelerates uniformly to a velocity of $18 \mathrm{~m} / \mathrm{s}$ in 4.0 s . What is its displacement during the 4.0 s time interval?
2. A car acquires a velocity of $32 \mathrm{~m} / \mathrm{s}$ by accelerating at $4.0 \mathrm{~m} / \mathrm{s}^{2}$ for 5.0 s . What was its initial velocity?
3. A ball falling from rest is located at 45 m below its starting point 3.0 s later. Assuming that its acceleration is uniform, what is its value?

Answers;

1. 44 m
$2.12 \mathrm{~m} / \mathrm{s}$
$3.10 \mathrm{~m} / \mathrm{s}^{2}$
