Graphical Velocity and Acceleration

by
Nada Saab-Ismail, PhD, MAT, MEd, IB
nhsaab.weebly.com
nhsaab2014@gmail.com

P2.1D Describe and analyze the motion that a position-time graph represents, given the graph.
P2.2C Describe and analyze the motion that a velocity-time graph represents, given the graph.
P2.2e Use the area under a velocity-time graph to calculate the distance traveled and the slope to calculate the acceleration.

Items:

1. Velocity: Slope of Position versus Time Graph.
2. Instantaneous Velocity.
3. Acceleration: Slope of Velocity versus Time Graph.

Velocity (symbole: v)

Constant Velocity: Slope of Position versus Time Graph

Suppose a bicyclist is riding with a constant velocity of $v=4 \mathrm{~m} / \mathrm{s}$. The position x of the bicycle can be plotted along the vertical axis of a graph. The time t is plotted along the horizontal axis. A graph of position versus time is shown below.

Recall that linear equations have the general form: $y=m x$ (m is a constant)

Since the position of the bike increases by 4 m every second, the graph of x versus t is a straight line. Furthermore, if the bike is assumed to be at $x=0 \mathrm{~m}$ when $t=0 \mathrm{~s}$, the straight line passes through the origin. Each point on this line gives the position of the bike at a particular time. For instance, at $t=1 \mathrm{~s}$ the position is 4 m , while at $\mathrm{t}=3 \mathrm{~s}$ the position is 12 m .

The velocity could be determined by considering what happens to the bike between the times of 1 s and 3 s , for instance. It is the slope of the line.

Calculation:

Between the time, 1 s (initial) and 3 s (final), the change in time is $\Delta \mathrm{t}=(\mathrm{t}$ final -t initial) $=(3-1)=2 \mathrm{~s}$.

During this time interval, the position of the bike changes from + 4 m (initial) to +12 m (final). So, the change of position $\Delta x=$ final position - initial position $=(x$ final $\left.-\mathrm{X}_{\text {initial }}\right)=(12-4)=8 \mathrm{~m}$.

The ratio $\Delta x / \Delta t$ is called the slope of the straight line and it is the velocity.

$$
\begin{gathered}
\text { Velocity }=\text { Slope }=\Delta \mathbf{x} / \Delta \mathrm{t} \\
\text { Slope }=\frac{\Delta x}{\Delta t}=\frac{+8 \mathrm{~m}}{2 \mathrm{~s}}=+4 \mathrm{~m} / \mathrm{s}=v
\end{gathered}
$$

Calculating Velocity from a position-time graph.

-Thus, for an object moving with a constant velocity, the slope of the straight line in a position- time graph gives the velocity. The position (x) is plotted along the vertical axis of a graph. The time (t) is plotted along the horizontal axis.

- Since the position- time graph is a straight line, any time interval t can be chosen to calculate the velocity. Choosing a different t will yield a different x, but the velocity $\Delta \mathrm{x} / \Delta \mathrm{t}$ will not change.

$$
\begin{gathered}
\text { Calculating velocity using a position-time graph } \\
\begin{array}{c}
\text { Velocity }(\mathrm{v})=\text { slope }(\mathrm{x} \text { vs } \mathrm{t})= \\
\Delta \mathrm{x} / \Delta \mathrm{t}= \\
\text { change in position } / \text { change in time }= \\
\left(\mathrm{x}_{\text {final }}-\mathrm{x}_{\text {initial }}\right) /\left(\mathrm{t}_{\text {final }}-\mathrm{t}_{\text {initial }}\right)
\end{array}
\end{gathered}
$$

Example 1: A Bicyclist Riding with a Constant Velocity

In the real world, objects rarely move with a constant velocity at all times, as illustrated in the position versus time graph of a bicycle trip shown below.

Analysis of the Graph

Segment 1: Positive velocity: A bicyclist maintains a constant positive velocity on the outgoing leg of a trip. When time increases from 0 s to 600 s , the distance increases from 0 m to 1200 m .

Segment 2: Zero velocity. He maintains zero velocity while stopped. When time increases from 600 s to 1000 s , the distance stays the same at 1200 m (no movement).

Segment 3: Negative velocity. Another constant velocity on the way back. When time increases after 1000 s , the distance decreases from 1200 m and less.

Using the time and position intervals indicated in the drawing, obtain the velocities for each segment (1, 2 and 3) of the trip.

Answer

We know that velocity is the slope to the position-time graph. We need to calculate the slope of each segment. velocity $=$ slope $=\Delta x / \Delta t$.

We can take any two points on each segment and find the slope. Usually, we choose the clear points that make the calculation easier.

Segment 1:

During the time between $200 \mathrm{~s}(\mathrm{t}$ initial) and $400 \mathrm{~s}(\mathrm{t}$ final $)$, the distance went from 400 m (X initial) to 800 m ($\mathrm{X}_{\text {final }}$).

Velocity $=$ slope $=$ change in position $/$ change in time $=\Delta x / \Delta t$.

$$
\begin{gathered}
\left(\mathrm{x}_{\text {final }}-\mathrm{x}_{\text {initial }}\right) /\left(\mathrm{t}_{\text {final }}-\mathrm{t}_{\text {initial }}\right)= \\
(800-400) /(400-200)= \\
400 / 200= \\
2 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Segment 2:

During the time from $600 \mathrm{~s}(\mathrm{t}$ initial $)$ to $1000 \mathrm{~s}(\mathrm{t}$ final $)$, the distance stayed the same at 1200 m .

Velocity $=$ slope $=$ change in position $/$ change in time $=\Delta x / \Delta t$.

$$
\begin{gathered}
\left(\mathrm{x}_{\text {final }}-\mathrm{x}_{\text {initial }}\right) /\left(\mathrm{t}_{\text {final }}-\mathrm{t}_{\text {initial }}\right)= \\
(1200-1200) /(1000-600)= \\
0 / 400= \\
0 \mathrm{~m} / \mathrm{s}(\text { not moving })
\end{gathered}
$$

Segment 3:

During the time from $1400 \mathrm{~s}(\mathrm{t}$ initial) to $1800 \mathrm{~s}(\mathrm{t}$ final) , the distance changed from $800 \mathrm{~m}\left(\mathrm{x}\right.$ initial)) to $400 \mathrm{~m}\left(\mathrm{x}_{\text {final }}\right)$. He is going back toward initial position.

Velocity $=$ slope $=$ change in position $/$ change in time $=\Delta x / \Delta t$.
$\left(\mathrm{x}_{\text {final }}-\mathrm{x}_{\text {initial }}\right) /\left(\mathrm{t}_{\text {final }}-\mathrm{t}_{\text {initial }}\right)=$
$(400-800) /(1800-1400)=$ $-400 / 400=$
$-1 \mathrm{~m} / \mathrm{s}$ (negative velocity)

Summary

Solution The average velocities for the three segments are
Segment $1 \quad \bar{v}=\frac{\Delta x}{\Delta t}=\frac{800 \mathrm{~m}-400 \mathrm{~m}}{400 \mathrm{~s}-200 \mathrm{~s}}=\frac{+400 \mathrm{~m}}{200 \mathrm{~s}}=+2 \mathrm{~m} / \mathrm{s}$
Segment $2 \quad \bar{v}=\frac{\Delta x}{\Delta t}=\frac{1200 \mathrm{~m}-1200 \mathrm{~m}}{1000 \mathrm{~s}-600 \mathrm{~s}}=\frac{0 \mathrm{~m}}{400 \mathrm{~s}}=0 \mathrm{~m} / \mathrm{s}$
Segment $3 \quad \bar{v}=\frac{\Delta x}{\Delta t}=\frac{400 \mathrm{~m}-800 \mathrm{~m}}{1800 \mathrm{~s}-1400 \mathrm{~s}}=\frac{-400 \mathrm{~m}}{400 \mathrm{~s}}=-1 \mathrm{~m} / \mathrm{s}$

Instantaneous Velocity

Object Moving with Changing Velocity

When the velocity is changing, the position-vs.-time graph is a curved line. The slope $\boldsymbol{\Delta} \mathbf{x} / \Delta \mathbf{t}$ of the tangent line drawn to the curve at a given time is the instantaneous velocity at that time.

Acceleration (symbol: a)

Acceleration: Slope of Velocity versus Time Graph

- For an object moving with a constant velocity, the slope of the straight line in a velocity- time graph gives the acceleration. The velocity (v) is plotted along the vertical axis of a graph. The time (t) is plotted along the horizontal axis.

- Since the velocity- time graph is a straight line, any time interval t can be chosen to calculate the acceleration. Choosing a different t will yield a different v , but the velocity $\Delta \mathrm{v} / \Delta \mathrm{t}$ will not change.

Calculating acceleration using a velocity-time graph
Acceleration (a) $=$ slope $(v v s t)=$ $\Delta v / \Delta t=$ change in velocity $/$ change in time $=$

$$
\left(v_{\text {final }}-v_{\text {initial }}\right) /\left(t_{\text {final }}-t_{\text {initial }}\right)
$$

Example 2: An object moving at constant acceleration.

This is the velocity versus time graph of an object moving at constant acceleration. The graph is a straight line (red color). The initial velocity is $\mathbf{v}_{0}=5$ m / s when $\mathrm{t}=0 \mathrm{~s}$. Calculate the acceleration of this object.

To calculate the acceleration, we need to calculate the slope of the line. We can take the time interval between 2 s (initial) and 4 s (final). At $\mathrm{t}=2 \mathrm{~s}$, the velocity $\left(v_{\text {initial }}\right)$ is $16 \mathrm{~m} / \mathrm{s}$. At $\mathrm{t}=4 \mathrm{~s}$, the velocity $\left(\mathrm{v}_{\text {final }}\right)$ is $28 \mathrm{~m} / \mathrm{s}$.

Calculation:

Acceleration $=$ slope $=$ change in velocity $/$ change in time $=$
$\Delta v / \Delta t=$

$$
\begin{gathered}
\left(\mathrm{v}_{\text {final }}-\mathrm{v}_{\text {initial }}\right) /\left(\mathrm{t} \text { final }-\mathrm{t}_{\text {initial }}\right)= \\
(28-16) /(4-2)= \\
12 / 2= \\
6 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

Summary:

This velocity-vs.-time graph applies to an object with an acceleration of $\Delta \mathbf{v} / \Delta \mathrm{t}=$ $6 \mathrm{~m} / \mathrm{s}^{2}$.

$$
\text { Slope }=\frac{\Delta v}{\Delta t}=\frac{+12 \mathrm{~m} / \mathrm{s}}{2 \mathrm{~s}}=+6 \mathrm{~m} / \mathrm{s}^{2}=a
$$

Example 3:

References:

1) Humanic. (2013). www.physics.ohio-state.edu/~humanic/. In Thomas Humanic Brochure Page.

Physics 1200 Lecture Slides: Dr. Thomas Humanic, Professor of Physics, Ohio State University, 2013-2014 and Current. www.physics.ohio-state.edu/~humanic/
2) Cutnell, J. D. \& Johnson, K. W. (1998). Cutnell \& Johnson Physics, Fourth Edition. New York: John Wiley \& Sons, Inc.

The edition was dedicated to the memory of Stella Kupferberg, Director of the Photo Department: "We miss you, Stella, and shall always remember that a well-chosen photograph should speak for itself, without the need for a lengthy explanation"
3) Martindale, D. G. \& Heath, R. W. \& Konrad, W. W. \& Macnaughton, R. R. \& Carle, M. A. (1992). Heath Physics. Lexington: D.C. Heath and Company
4) Zitzewitz, P. W. (1999). Glencoe Physics Principles and Problems. New York: McGraw-Hill Companies, Inc.
5) Nada H. Saab (Saab-Ismail), (2010-2013) Westwood Cyber High School, Physics.
6) Nada H. Saab (Saab-Ismail), (2009-2014) Wayne RESA, Bilingual Department.

